Datasheet Texas Instruments SN54AHC574 — 数据表
制造商 | Texas Instruments |
系列 | SN54AHC574 |
具有三态输出的八路边沿触发D型触发器
数据表
SNx4AHC574 Octal Edge-Triggered D-Type Flip-Flops With 3-State Outputs datasheet
PDF, 1.5 Mb, 修订版: J, 档案已发布: Dec 27, 2014
从文件中提取
价格
状态
5962-9685401Q2A | 5962-9685401QRA | 5962-9685401QSA | SNJ54AHC574FK | SNJ54AHC574J | SNJ54AHC574W | |
---|---|---|---|---|---|---|
Lifecycle Status | Active (Recommended for new designs) | Active (Recommended for new designs) | Active (Recommended for new designs) | Active (Recommended for new designs) | Active (Recommended for new designs) | Active (Recommended for new designs) |
Manufacture's Sample Availability | No | No | No | No | No | No |
打包
5962-9685401Q2A | 5962-9685401QRA | 5962-9685401QSA | SNJ54AHC574FK | SNJ54AHC574J | SNJ54AHC574W | |
---|---|---|---|---|---|---|
N | 1 | 2 | 3 | 4 | 5 | 6 |
Pin | 20 | 20 | 20 | 20 | 20 | 20 |
Package Type | FK | J | W | FK | J | W |
Industry STD Term | LCCC | CDIP | CFP | LCCC | CDIP | CFP |
JEDEC Code | S-CQCC-N | R-GDIP-T | R-GDFP-F | S-CQCC-N | R-GDIP-T | R-GDFP-F |
Package QTY | 1 | 1 | 1 | 1 | 1 | 1 |
Carrier | TUBE | TUBE | TUBE | TUBE | TUBE | TUBE |
Device Marking | 574FK | 5962-9685401QR | 5962-9685401QS | SNJ54AHC | 5962-9685401QR | SNJ54AHC574W |
Width (mm) | 8.89 | 6.92 | 6.92 | 8.89 | 6.92 | 6.92 |
Length (mm) | 8.89 | 24.2 | 13.09 | 8.89 | 24.2 | 13.09 |
Thickness (mm) | 1.83 | 4.57 | 1.84 | 1.83 | 4.57 | 1.84 |
Pitch (mm) | 1.27 | 2.54 | 1.27 | 1.27 | 2.54 | 1.27 |
Max Height (mm) | 2.03 | 5.08 | 2.45 | 2.03 | 5.08 | 2.45 |
Mechanical Data | 下载 | 下载 | 下载 | 下载 | 下载 | 下载 |
参数化
Parameters / Models | 5962-9685401Q2A | 5962-9685401QRA | 5962-9685401QSA | SNJ54AHC574FK | SNJ54AHC574J | SNJ54AHC574W |
---|---|---|---|---|---|---|
3-State Output | Yes | Yes | Yes | Yes | Yes | Yes |
Bits | 8 | 8 | 8 | 8 | 8 | 8 |
F @ Nom Voltage(Max), Mhz | 110 | 110 | 110 | 110 | 110 | 110 |
ICC @ Nom Voltage(Max), mA | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
Input Type | CMOS | CMOS | CMOS | CMOS | CMOS | CMOS |
Operating Temperature Range, C | -55 to 125 | -55 to 125 | -55 to 125 | -55 to 125 | -55 to 125 | -55 to 125 |
Output Drive (IOL/IOH)(Max), mA | 50/-50 | 50/-50 | 50/-50 | 50/-50 | 50/-50 | 50/-50 |
Output Type | CMOS | CMOS | CMOS | CMOS | CMOS | CMOS |
Package Group | LCCC | CDIP | CFP | LCCC | CDIP | CFP |
Package Size: mm2:W x L, PKG | 20LCCC: 79 mm2: 8.89 x 8.89(LCCC) | See datasheet (CDIP) | See datasheet (CFP) | 20LCCC: 79 mm2: 8.89 x 8.89(LCCC) | See datasheet (CDIP) | See datasheet (CFP) |
Rating | Military | Military | Military | Military | Military | Military |
Technology Family | AHC | AHC | AHC | AHC | AHC | AHC |
VCC(Max), V | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 |
VCC(Min), V | 2 | 2 | 2 | 2 | 2 | 2 |
tpd @ Nom Voltage(Max), ns | 19,12 | 19,12 | 19,12 | 19,12 | 19,12 | 19,12 |
生态计划
5962-9685401Q2A | 5962-9685401QRA | 5962-9685401QSA | SNJ54AHC574FK | SNJ54AHC574J | SNJ54AHC574W | |
---|---|---|---|---|---|---|
RoHS | See ti.com | See ti.com | See ti.com | See ti.com | See ti.com | See ti.com |
应用须知
- Benefits & Issues of Migrating 5-V and 3.3-V Logic to Lower-Voltage Supplies (Rev. A)PDF, 154 Kb, 修订版: A, 档案已发布: Sep 8, 1999
In the last few years the trend toward reducing supply voltage (VCC) has continued as reflected in an additional specification of 2.5-V VCC for the AVC ALVT ALVC LVC LV and the CBTLV families.In this application report the different logic levels at VCC of 5 V 3.3 V 2.5 V and 1.8 V are compared. Within the report the possibilities for migration from 5-V logic and 3.3-V logic families - How to Select Little Logic (Rev. A)PDF, 1.1 Mb, 修订版: A, 档案已发布: Jul 26, 2016
TI Little Logic devices are logic-gate devices assembled in a small single- dual- or triple- gate package. Little Logic devices are widely used in portable equipment such as mobile phones MP3 players and notebook computers. Little Logic devices also are used in desktop computers and telecommunications. Little Logic gates are common components for easy PC board routing schematic design and b - Advanced High-Speed CMOS (AHC) Logic Family (Rev. C)PDF, 102 Kb, 修订版: C, 档案已发布: Dec 2, 2002
The Texas Instruments (TI) advanced high-speed CMOS (AHC) logic family provides a natural migration for high-speed CMOS (HCMOS) users who need more speed for low-power and low-drive applications. Unlike many other advanced logic families AHC does not have the drawbacks that come with higher speed e.g. higher signal noise and power consumption. The AHC logic family consists of gates medium-sca - Power-Up Behavior of Clocked Devices (Rev. A)PDF, 34 Kb, 修订版: A, 档案已发布: Feb 6, 2015
- TI IBIS File Creation Validation and Distribution ProcessesPDF, 380 Kb, 档案已发布: Aug 29, 2002
The Input/Output Buffer Information Specification (IBIS) also known as ANSI/EIA-656 has become widely accepted among electronic design automation (EDA) vendors semiconductor vendors and system designers as the format for digital electrical interface data. Because IBIS models do not reveal proprietary internal processes or architectural information semiconductor vendors? support for IBIS con - Migration From 3.3-V To 2.5-V Power Supplies For Logic DevicesPDF, 115 Kb, 档案已发布: Dec 1, 1997
This application report explores the possibilities for migrating to 3.3-V and 2.5-V power supplies and discusses the implications.Customers are successfully using a wide range of low-voltage 3.3-V logic devices. These devices are within Texas Instruments (TI) advanced low-voltage CMOS (ALVC) crossbar technology (CBT) crossbar technology with integrated diode (CBTD) low-voltage crossbar techn - Live InsertionPDF, 150 Kb, 档案已发布: Oct 1, 1996
Many applications require the ability to exchange modules in electronic systems without removing the supply voltage from the module (live insertion). For example an electronic telephone exchange must always remain operational even during module maintenance and repair. To avoid damaging components additional circuitry modifications are necessary. This document describes in detail the phenomena tha - Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A)PDF, 105 Kb, 修订版: A, 档案已发布: Aug 1, 1997
The spectrum of bus-interface devices with damping resistors or balanced/light output drive currently offered by various logic vendors is confusing at best. Inconsistencies in naming conventions and methods used for implementation make it difficult to identify the best solution for a given application. This report attempts to clarify the issue by looking at several vendors? approaches and discussi - Texas Instruments Little Logic Application ReportPDF, 359 Kb, 档案已发布: Nov 1, 2002
Portable and consumer electronic systems? needs present greater challenges today than ever before. Engineers strive to design smaller faster lower-cost systems to meet the market demand. Consequently the semiconductor industry faces a growing need to increase operating speed minimize power consumption and reduce packaging size. Texas Instruments manufactures a variety of Little Logic semicond - Understanding and Interpreting Standard-Logic Data Sheets (Rev. C)PDF, 614 Kb, 修订版: C, 档案已发布: Dec 2, 2015
- Semiconductor Packing Material Electrostatic Discharge (ESD) ProtectionPDF, 337 Kb, 档案已发布: Jul 8, 2004
Forty-eight-pin TSSOP components that were packaged using Texas Instruments (TI) standard packing methodology were subjected to electrical discharges between 0.5 and 20 kV as generated by an IEC ESD simulator to determine the level of ISD protection provided by the packing materials. The testing included trays tape and reel and magazines. Additional units were subjected to the same discharge - Selecting the Right Level Translation Solution (Rev. A)PDF, 313 Kb, 修订版: A, 档案已发布: Jun 22, 2004
Supply voltages continue to migrate to lower nodes to support today's low-power high-performance applications. While some devices are capable of running at lower supply nodes others might not have this capability. To haveswitching compatibility between these devices the output of each driver must be compliant with the input of the receiver that it is driving. There are several level-translati - Introduction to LogicPDF, 93 Kb, 档案已发布: Apr 30, 2015
- Implications of Slow or Floating CMOS Inputs (Rev. D)PDF, 260 Kb, 修订版: D, 档案已发布: Jun 23, 2016
- CMOS Power Consumption and CPD Calculation (Rev. B)PDF, 89 Kb, 修订版: B, 档案已发布: Jun 1, 1997
Reduction of power consumption makes a device more reliable. The need for devices that consume a minimum amount of power was a major driving force behind the development of CMOS technologies. As a result CMOS devices are best known for low power consumption. However for minimizing the power requirements of a board or a system simply knowing that CMOS devices may use less power than equivale
模型线
系列: SN54AHC574 (6)
制造商分类
- Semiconductors> Space & High Reliability> Logic Products> Flip-Flop/Latch/Registers