Datasheet Texas Instruments OPA684 — 数据表

制造商Texas Instruments
系列OPA684
Datasheet Texas Instruments OPA684

具有禁用功能的低功耗,电流反馈运算放大器

数据表

Low-Power, Current Feedback Operational Amplifier With Disable datasheet
PDF, 1.1 Mb, 修订版: D, 档案已发布: Jun 19, 2009
从文件中提取

价格

状态

OPA684IDOPA684IDBVROPA684IDBVRG4OPA684IDBVTOPA684IDBVTG4OPA684IDG4OPA684IDROPA684IDRG4
Lifecycle StatusActive (Recommended for new designs)Active (Recommended for new designs)Active (Recommended for new designs)Active (Recommended for new designs)Active (Recommended for new designs)Active (Recommended for new designs)Active (Recommended for new designs)Active (Recommended for new designs)
Manufacture's Sample AvailabilityYesNoYesNoYesNoYesYes

打包

OPA684IDOPA684IDBVROPA684IDBVRG4OPA684IDBVTOPA684IDBVTG4OPA684IDG4OPA684IDROPA684IDRG4
N12345678
Pin86666888
Package TypeDDBVDBVDBVDBVDDD
Industry STD TermSOICSOT-23SOT-23SOT-23SOT-23SOICSOICSOIC
JEDEC CodeR-PDSO-GR-PDSO-GR-PDSO-GR-PDSO-GR-PDSO-GR-PDSO-GR-PDSO-GR-PDSO-G
Package QTY75300030002502507525002500
CarrierTUBELARGE T&RLARGE T&RSMALL T&RSMALL T&RTUBELARGE T&RLARGE T&R
Device MarkingOPAB84B84B84B84OPA684OPA
Width (mm)3.911.61.61.61.63.913.913.91
Length (mm)4.92.92.92.92.94.94.94.9
Thickness (mm)1.581.21.21.21.21.581.581.58
Pitch (mm)1.27.95.95.95.951.271.271.27
Max Height (mm)1.751.451.451.451.451.751.751.75
Mechanical Data下载下载下载下载下载下载下载下载

参数化

Parameters / ModelsOPA684ID
OPA684ID
OPA684IDBVR
OPA684IDBVR
OPA684IDBVRG4
OPA684IDBVRG4
OPA684IDBVT
OPA684IDBVT
OPA684IDBVTG4
OPA684IDBVTG4
OPA684IDG4
OPA684IDG4
OPA684IDR
OPA684IDR
OPA684IDRG4
OPA684IDRG4
2nd Harmonic, dBc6767676767676767
3rd Harmonic, dBc7070707070707070
@ MHz55555555
Acl, min spec gain, V/V11111111
Additional FeaturesShutdownShutdownShutdownShutdownShutdownShutdownShutdownShutdown
ArchitectureBipolar,Current FBBipolar,Current FBBipolar,Current FBBipolar,Current FBBipolar,Current FBBipolar,Current FBBipolar,Current FBBipolar,Current FB
BW @ Acl, MHz210210210210210210210210
CMRR(Min), dB5353535353535353
CMRR(Typ), dB6060606060606060
GBW(Typ), MHz210210210210210210210210
Input Bias Current(Max), pA1000000010000000100000001000000010000000100000001000000010000000
Iq per channel(Max), mA1.81.81.81.81.81.81.81.8
Iq per channel(Typ), mA1.71.71.71.71.71.71.71.7
Number of Channels11111111
Offset Drift(Typ), uV/C1212121212121212
Operating Temperature Range, C-40 to 85-40 to 85-40 to 85-40 to 85-40 to 85-40 to 85-40 to 85-40 to 85
Output Current(Typ), mA120120120120120120120120
Package GroupSOICSOT-23SOT-23SOT-23SOT-23SOICSOICSOIC
Package Size: mm2:W x L, PKG8SOIC: 29 mm2: 6 x 4.9(SOIC)6SOT-23: 8 mm2: 2.8 x 2.9(SOT-23)6SOT-23: 8 mm2: 2.8 x 2.9(SOT-23)6SOT-23: 8 mm2: 2.8 x 2.9(SOT-23)6SOT-23: 8 mm2: 2.8 x 2.9(SOT-23)8SOIC: 29 mm2: 6 x 4.9(SOIC)8SOIC: 29 mm2: 6 x 4.9(SOIC)8SOIC: 29 mm2: 6 x 4.9(SOIC)
Rail-to-RailNoNoNoNoNoNoNoNo
RatingCatalogCatalogCatalogCatalogCatalogCatalogCatalogCatalog
Slew Rate(Typ), V/us820820820820820820820820
Total Supply Voltage(Max), +5V=5, +/-5V=101212121212121212
Total Supply Voltage(Min), +5V=5, +/-5V=1055555555
Vn at 1kHz(Typ), nV/rtHz3.73.73.73.73.73.73.73.7
Vn at Flatband(Typ), nV/rtHz3.73.73.73.73.73.73.73.7
Vos (Offset Voltage @ 25C)(Max), mV3.53.53.53.53.53.53.53.5

生态计划

OPA684IDOPA684IDBVROPA684IDBVRG4OPA684IDBVTOPA684IDBVTG4OPA684IDG4OPA684IDROPA684IDRG4
RoHSCompliantCompliantCompliantCompliantCompliantCompliantCompliantCompliant

应用须知

  • Considerations for High-Gain Multistage Designs
    PDF, 347 Kb, 档案已发布: May 13, 2013
  • Making the Most of a Low-Power, High-Speed Operational Amplifier
    PDF, 221 Kb, 档案已发布: Nov 22, 2009
    High-speed, high-performance operational amplifiers tend to be associated with high power dissipation. This application note compares the relative performance of several low-power, high-speed operational amplifiers and describes trade-offs to balance performance with low quiescent power dissipation.
  • A Numerical Solution to an Analog Problem
    PDF, 210 Kb, 档案已发布: Apr 25, 2010
    In order to derive a solution for an analog circuit problem, it is often useful to develop a model. This approach is generally accepted as developing an analytical model. However, finding the analytical solution is not always practical or possible as a result of higher-degree polynomials that require further resolution, or because of the time needed to develop the solution completely. In these sit
  • Current Feedback Amplifiers: Review, Stability Analysis, and Applications
    PDF, 53 Kb, 档案已发布: Nov 20, 2000
    The majority of op amp circuits are closed-loop feedback systems that implement classical control theory analysis. Analog designers are comfortable with Voltage FeedBack (VFB) op amps in a closed-loop system and are familiar with the ideal op amp approximations feedback permit. This application bulletin will demonstrate how CFB op amps can be analyzed in a similar fashion. Once the closed-loop sim
  • Stabilizing Current-Feedback Op Amps While Optimizing Circuit Performance
    PDF, 280 Kb, 档案已发布: Apr 28, 2004
    Optimizing a circuit design with a current-feedback (CFB) op amp is a relatively straightforward task, once one understands how CFB op amps achieve stability. This application note explains a 2nd-order CFB model so that any designer can better understand the flexibility of the CFB op amp. This report also discusses stability analysis, the effects of parasitic components due to PCBs, optimization
  • Expanding the usability of current-feedback amplifiers
    PDF, 215 Kb, 档案已发布: Feb 28, 2005
  • Active filters using current-feedback amplifiers
    PDF, 227 Kb, 档案已发布: Feb 25, 2005
  • RLC Filter Design for ADC Interface Applications (Rev. A)
    PDF, 299 Kb, 修订版: A, 档案已发布: May 13, 2015
    As high performance Analog-to-Digital Converters (ADCs) continue to improve in their performance, the last stage interface from the final amplifier into the converter inputs becomes a critical element in the system design if the full converter dynamic range is desired. This application note describes the performance and design equations for a simple passive 2nd-order filter used successfully in AD
  • Wideband Complementary Current Output DAC Single-Ended Interface
    PDF, 597 Kb, 档案已发布: Jun 21, 2005
    High-speed digital-to-analog converters (DACs) most often use a transformer-coupled output stage. In applications where this configuration is not practical, a single op ampdifferential to single-ended stage has often been used. This application note steps through the exact design equations required to achieve gain matching from each output as well as a matched input impedance to each of the DA
  • ADS5500, OPA695: PC Board Layout for Low Distortion High-Speed ADC Drivers
    PDF, 273 Kb, 档案已发布: Apr 22, 2004
    Once an analog-to-digital converter (ADC) and a driver/interface have been selected for a given application, the next step to achieving excellent performance is laying out the printed circuit board (PCB) that will support the application. This application report describes several techniques for optimizing a high-speed, 14-bit performance, differential driver PCB layout using a wideband operation
  • Measuring Board Parasitics in High-Speed Analog Design
    PDF, 134 Kb, 档案已发布: Jul 7, 2003
    Successful circuit designs using high-speed amplifiers can depend upon understanding and identifying parasitic PCB components. Simulating a design while including PCB parasitics can protect against unpleasant production surprises. This application report discusses an easy method for measuring parasitic components in a prototype or final PC board design by using a standard oscilloscope and low freq
  • Noise Analysis for High Speed Op Amps (Rev. A)
    PDF, 256 Kb, 修订版: A, 档案已发布: Jan 17, 2005
    As system bandwidths have increased an accurate estimate of the noise contribution for each element in the signal channel has become increasingly important. Many designers are not however particularly comfortable with the calculations required to predict the total noise for an op amp or in the conversions between the different descriptions of noise. Considerable inconsistency between manufactu

模型线

制造商分类

  • Semiconductors> Amplifiers> Operational Amplifiers (Op Amps)> High-Speed Op Amps (>=50MHz)